
Predicting Progress in a Large-scale Online
Programming Course

Vincent Zhang1, Bryn Jeffries2,1, and Irena Koprinska1

School of Computer Science, The University of Sydney, Sydney NSW 2006, Australia
Grok Academy, PO Box 144, Broadway, Sydney, NSW 2007, Australia
vzha9726@uni.sydney.edu.au, irena.koprinska@sydney.edu.au

bryn.jeffries@grokacademy.org

Abstract. With vast amounts of educational data being generated in
schools, educators are increasingly embracing data mining techniques
to track student progress, especially in programming courses, a growing
area of computer science education research. However, there are few ac-
curate and interpretable methods to track student progress in program-
ming courses. To bridge this gap, we propose a decision tree approach
to predict student progress in a large-scale online programming course.
We demonstrate that this approach is highly interpretable and accurate,
with an overall average accuracy of 88% and average dropout accuracy
of 82%. Additionally, we identify important slides such as problem slide
which significantly impact student outcomes.

Keywords: Student progress · Decision trees · Computer programming.

1 Introduction

Computational skills are essential in advanced economies, but mastering them
is difficult, particularly for K-12 students with no prior programming experi-
ence. Many schools use online coding platforms to teach computational skills
and gather student programming data. Educational data mining techniques can
help analyse data, monitor progress and prevent dropout. However, student data
is often complex and difficult to understand. This paper proposes a decision tree
approach that uses slide interaction features to predict student progress and iden-
tify important slides for students to focus on. Overall, we aim to answer the ques-
tion: How can we make predicting K-12 student progress in programming courses
more accurate and interpretable using educational data mining techniques? This
is guided by three research questions:

1. Are slide interaction features a useful predictor of end of module outcomes?

2. How can we represent student progress in a useful format for educators?

3. What are the important slides in each module?



2 V. Zhang et al.

2 Background and Related Work

Improving learning outcomes for student programmers requires understanding
their progress and behaviour. Past research has largely focused on knowledge
gaps to explain poor programming performance, including difficulty with recur-
sion [2] and confusing equality with assignment [1]. However, student interactions
with course activities has received little attention, despite its positive impact on
performance in other subjects [4].

Additionally, there is a growing body of research on data mining to predict
student progress. Progress networks [7] provide a visualisation of student pro-
gression through learning tasks. Approaches based on extracting features and
using clustering techniques to identify typical student behaviours have also been
investigated in [8,6]. Predicting final marks based on past assessment results and
student participation has been studied in [9,5], while [3] examined the effect of
prior knowledge, problem solving skills and engagement on student performance.

Overall, there has been little research on using course content features (rep-
resented as log data) to predict programming performance, and doing so in an
interpretable way for educators. In this paper we aim to address these gaps by:

1. Using course content features such as each student’s interactions with course
slides (i.e. slide interactions) to predict student performance;

2. Using decision tree classifiers with feature selection to represent program-
ming progress in a more interpretable and useful format for educators;

3. Identifying key points in course modules where teachers can intervene to
improve student performance and prevent dropout.

3 Data

We use a dataset from the National Computer Science School Challenge from
2018. Four courses were offered:

1. Newbies: Designed for young students (10 – 14 years old) with no prior
programming experience, and conducted in the Blockly visual environment.

2. Beginners Blockly: Designed for students (12 – 16 years old) with no prior
programming experience, and conducted in the Blockly visual environment.

3. Beginners: Same problems and target group as Beginners Blockly, but con-
ducted in Python.

4. Intermediate: Designed for high school students (14 – 18 years old) with
prior programming experience. Conducted in Python.

There are ∼35,000 students in total. Each course has 10 modules containing a
number of content and problem slides. Content slides provide prerequisite knowl-
edge, interactive exercises and examples that students can do to help them solve
the tasks on the problem slides which test programming skills and understand-
ing. Problem slides occur less frequently than content slides are typically located
at the middle and end of each module. We used student log data to extract slide
interaction events such as slide visits, running code and submitting code. Test
outcomes (“Pass” if all test cases passed, otherwise “Fail”) were also recorded.



Predicting Progress in a Large-scale Online Programming Course 3

4 Method

Our approach predicts performance on the last problem in each module using
interactions on previous content and problem slides in the same module. There
are three stages outlined below.

4.1 Slide interaction data extraction and train-test split

We represent student slide interactions for each module as a vector, where each
entry is a content or problem slide event and the last entry is the outcome
of the last problem. The length of the vector is the number of slides in the
module. Content slide events are “Completed”/“Not completed”. Problem slide
events are “No submission”/“Failed submission”/“Passed submission”. Separate
datasets are constructed for each module, and split into training and test sets
using 10-fold cross-validation with stratification.

4.2 Feature Selection and Ranking

We use two feature selection algorithms: Correlation-Based Feature Selection
(CFS) and Information Gain Ratio (GR). CFS with best-first search starts with
an empty feature set and picks features highly correlated with the target class
but uncorrelated with each other. GR feature selection evaluates features by
their gain ratio with respect to the target class. We selected the top 2–3 features
based on GR’s rankings.

4.3 Classification

We investigated the performance of a Decision Tree (DT) classifier under three
conditions - without feature selection, with CFS and with GR. We compared
results with a baseline which predicts the majority class.

5 Results

Table 1 presents results for each course, including overall and per-class accuracy,
number of leaves and tree size. DT with and without feature selection has con-
sistently high overall accuracy (85.2 to 90.7% on all four courses), surpassing
the baseline (Table 1). Passed submission and no submission accuracy are also
high, ranging from 82% to 97%, and at least 70% respectively. However, pre-
dicting failed submissions remains challenging due to limited representation in
the dataset. This is because the coding problems are designed so that most stu-
dents are able to solve them. Figure 1 shows overall accuracy and no submission
accuracy for each module. Overall accuracy remains consistently high (80% and
above) for most modules up to Module 6, after which it decreases (Figure 1a),
possibly because later modules tend to have fewer students due to dropout.



4 V. Zhang et al.

Table 1. Comparison of average accuracies and tree characteristics across all courses

Overall
Accuracy

Accuracy
“Passed”

Accuracy
“Failed”

Accuracy
“No Sub-
mission”

Number
of leaves

Size of
tree

Newbies

Baseline 58.5
DT 85.3 74.3 4.5 91.5 6.1 9.9
DT + CFS 85.2 74.4 2.0 90.8 4.3 6.3
DT + GR 85.3 82.5 2.0 91.0 4.1 5.9

Beginners Blockly

Baseline 60.4
DT 88.8 96.5 2.6 87.0 7.6 11.9
DT + CFS 88.9 96.8 1.8 87.2 4.2 5.9
DT + GR 86.9 89.1 0.2 86.7 3.9 5.4

Beginners

Baseline 71.7
DT 90.8 98.0 5.9 77.6 13.9 23.6
DT + CFS 90.8 97.8 3.4 77.9 4.7 6.8
DT + GR 90.7 97.7 5.4 78.0 5.0 7.0

Intermediate

Baseline 71.8
DT 88.9 97.2 0.6 72.5 7.8 13.3
DT + CFS 88.9 97.0 0.1 73.3 3.4 4.7
DT + GR 88.9 96.9 0.0 73.5 3.2 4.3

Average 88.3 91.5 2.4 82.2 5.7 8.8

5.1 Evaluation by Educators

Results from 14 modules across 3 courses were evaluated by an educator, who
found “the trees help identify key slides where students may be struggling, and
slides with little pedagogical value that could be removed or improved”. One
drawback was that “nested trees could be misleading as educators should not
think that slides that were not ranked should be removed”.

6 Discussion

6.1 Accuracy in predicting end of module outcomes

Q1: Are slide interaction features a useful predictor of end of module outcomes?
The DT algorithm has high overall accuracy on all courses, accurately predicting
passed and no submissions (Table 1), demonstrating that slide interaction fea-
tures can be a useful and accurate predictor of student outcomes. The high “No
submission” accuracy means this method can identify students who are likely to
drop-out, giving educators a chance to intervene (Figure 1b).



Predicting Progress in a Large-scale Online Programming Course 5

Fig. 1. Classifier accuracies (with GR feature selection) across all courses

6.2 Effects of feature selection

Q2: How can we represent student progress in a useful format for educators? The
two feature selection methods (CFS and GR) created simpler decision trees with
fewer leaf nodes while maintaining accuracy. This makes it easier for educators
to identify key areas where students may need intervention. For instance, the DT
in Figure 3a shows that passing Slide 5 or 10 is necessary to achieve a “Pass”.

6.3 Key observations on chosen slides

Q3: What are the important slides in each module? Completing problem slides
is critical for passing final module problems as they provide a chance to practice
key skills. On average, they make up 75% of selected features across modules.
Interactive content slides are also selected sometimes. These results are consistent
with the doer effect [4] which posits that interactive practice is more beneficial
than passive reading and video watching.

7 Conclusion

The proposed approach accurately predicts student progress and identifies inter-
vention points, demonstrating the benefits of using course content features and
interpretable methods like decision trees. However, our data is limited by the
lack of sufficient failed submissions for the later courses. Future work will exam-
ine the impact of content slides, slide attempt order, and timing on progression,
so we can gain a better understanding of progression at each step of the module
and different student approaches.



6 V. Zhang et al.

(a) Intermediate w1p1 (with GR feature selection)

Fig. 2. Example decision trees

(a) Newbies w1p1 (with GR feature selection)

References

1. Bonar, J., Soloway, E.: Preprogramming knowledge: A major source of misconcep-
tions in novice programmers. Human–Computer Interaction 1(2), 133–161 (1985)

2. Dale, N.B.: Most difficult topics in CS1: Results of an online survey of educators.
SIGCSE Bull. 38(2), 49–53 (2006)

3. Kennedy, G., Coffrin, C., de Barba, P., Corrin, L.: Predicting success: How learn-
ers’ prior knowledge, skills and activities predict MOOC performance. In: Learning
Analytics and Knowledge. p. 136–140 (2015)

4. Koedinger, K.R., McLaughlin, E.A., Jia, J.Z., Bier, N.L.: Is the doer effect a causal
relationship? In: Learning Analytics and Knowledge. pp. 388–397 (2016)

5. Koprinska, I., Stretton, J., Yacef, K.: Predicting student performance from multiple
data sources. In: Artificial Intelligence in Education. pp. 678–681 (2015)

6. McBroom, J., Jeffries, B., Koprinska, I., Yacef, K.: Mining behaviors of students in
autograding submission system logs. In: Educational Data Mining (2016)

7. McBroom, J., Paassen, B., Jeffries, B., Koprinska, I., Yacef, K.: Progress networks
as a tool for analysing student programming difficulties. In: Australasian Computing
Education. p. 158–167 (2021)

8. Perera, D., Kay, J., Koprinska, I., Yacef, K., Zäıane, O.: Clustering and sequential
pattern mining of online collaborative learning data. IEEE Trans. Knowledge and
Data Eng. 21(6), 759–772 (2009)

9. Romero, C., López, M.I., Luna, J.M., Ventura, S.: Predicting students’ final perfor-
mance from participation in on-line discussion forums. Computers & Education 68,
458–472 (2013)


	Predicting Progress in a Large-scale Online Programming Course

